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The aim of this paper is to cxamine the class of p-cylindrical martinealces

in locally convex spaces. We study the relation between integrability and 1-
continuity. Our general approach leads us to new results even in Banach spa-
¢es.  One of the main results concerns the decomposability of cylindrical mar-
tingales in Banach spaces - Th. 2.2. The second part of this theorem is a
cylindrical version of the recent result of Chobanjan, lLinde and Tarielad:ze
[31 and may be considered as a new property of p-absolutely summing operators.

Metivier and Pellaumail ([4] and [5], Chapter 6} pointed out that it is
possible to develop the theory of stochastic integration with respect to 2-
cviindrical martingales in Banach spaces, cf. also [8]. The important cxam-
ples are cylindrical Brownian motion and white noise in time and in spacc.
Such processes have been discussed in connection with quantum field theory,
theory of partial differential equations involving random terms and filtering
theory in electrical engineering, c¢f. for example [7] and references thercin.
This motivated our study.

The plan of the paper is as follows. 1In the rest of this section we set
up the basic notation and conventions. Section 1 is devoted to cylindrical
random elements in locally convex spaces. Sometimes such elements are called
generalized processes. The relation between integrability and T-continuity of
cylindrical random elements is established. It is an extension of Chatterji's
results obtained in [1) for random variables. Also the important problcem of
deccomposability of cylindrical random clements is studied. Th. 1.1 is an ad-
dendum to Kwapien's theorem (2], th. 2). Namely, using the locally convex
space technique wec obtain the decomposition of XS* by a G-valued random varia-
ble instcad of G"-valued random variable, where F,G are Banach spaces, X:F,;*Lp

is a cylindrical random element and S:F»G is a p-absolutely summing operator.
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The point is that, in contrast with other papers, we consider here t-continuous
cylindrical random elements.

In section 2 we consider the class of p-cylindrical martingales, defined as
a family of cylindrical random elements. Th, 2.1 gives the general form of
convergent p-cylindrical martingales, if F% is a barrelled space and p > 1.

Th. 2.2 gives a condition under which some p-cylindrical martinpales are decom-
posable by convergent vector valued martingales in Banach spaces.

In the paper we will use the following notation. The capital letters F,G
will denote vector spaces and f,g their clements, respectively. For the de-
tailed definitions and preliminary facts on vector spaces we refer the readers
to [11]. The symbol <F,G> will denote the dual pair and <, > its bilinear form
on F x G. For A c F by A° denote the polar of A. If F is a locally convex
space /l.c.s./ then F; denotes its tcmological dual and <f,f'> or <f',f> stands
for the value of a functional f' at a point f ¢ F. By FO and Fr we will denote
the space F with the weak topology o(F,G) and with the Mackey topology T(F,G),
respectively. 1If F is a Banach space then by F without any additional subscript
we mean the space F with its norm topology. If S is a linear operator S* will

stand for its adjoint.

I. Cylindrical random elements. Let (?,B,P) be a probability space and 1P -

.P@,8,P), p = 0. Let <F,G> be a dual pair.
DEFINITION. Any linear operator X: G > LP is called a p-cylindriecal random
element (p-c.r.e.), p 2 0.

If F is a locally convex space and G = F', then any map x: =+ F, which
is weakly measurable, F-valued random variable, defines a 0-c.r.e. X by the
following formula

X f!' = <x,f*>, f!' ¢ F!?




. Lo . Y.,
It additionally, x has a p-weak order, p>0, (i.c., l<x,('>}' is integrabler ., then

\ is a p-g.r.c. The converse implication is not truc in general; take - = 0,1},
» 2
F=L°[0,1] and X = 1d: 12[0,1] » 1.7[0,1].

DEFINITION. Let p = 1. We say that a p-c.r.e. X is integrable if for each

B « B there exist FB ¢ F such that

<fB,g> = fB Xg dP for cach g ¢ G .

The most interesting case for our study is when F is locally convex and G = F'.

PROPOSITION 1.1 ([12], Th. 1)
let X be a 1-c.r.e. on a l.c.s. F. Then

{a) 1If X: F; > L1 is continuous, then X is integrable,

(b) 1If F is sequentially complete and X is integrable, then X: F% >~ L is
continuous.
COROLLARY 1.1
Let F be a complete l.c.s. and X be a p-c.r.e., p > 1, then the following con-
ditions are equivalent:

(1) X: F% 5> P is continuous.

(ii) X is integrable.
Proof. (i)} => (ii). It follows from Prop. 1.1(a). (ii) => (i)}. By Prop. 1.1
(b) X is continuous as a mapping X: F% > Ll; consequently X: F% »> 10 is also
continuous. Since X(F') c LP then by ([15], Th. 1) we have that X: F% s> P
is continuous.
REMARK. Chatterji in [1] studied first the relation between Pettis integra-
bility of vector valued functions (random elements) and continuity of the cor-
responding c.r.e.. In particular, he has shown that if F is a complete l.c.s.
then x: § > F is Pettis integrable iff the corresponding c.r.e. X: F{ -+ L1 %

is continuous and X(Uo) is relatively weak compact in Ll for each neighborhood

U of zero in F. This result gives the following,well known in Banach spaces,




fact: each weakly measurable F-valued function with finite p-order, p - 1, is
Pettis integrable.

We are now going to consider the situation for c.r.e.'s which are not neces-
sarily defined by random elements.
PROPOSITION. 1.2
Let F be a sequentially complete l.c.s. and let X be a l-c.r.e. Then

(a) If X is integrable, then X(Uo) is relatively weak compact in Ll for

each neighborhood U of zero in F.

(b) 1If additionally F is a reflexive Banach space, then the converse impli-

cation holds.
Proof. If U is an absolutely convex neighborhood of zero in F, then v° is
o(F',F) compact (f11], ITI, 4.3 and IV, 1.4). Thus we have part (a).

(by If X(Bo) is weakly relatively compact in Ll, where B is the unit ball
in a reflexive Banach space F, then X is bounded. Since F is reflexive F% = F!'
(cf. [11]}, IV, 5.5). Thus X: F' ~» L1 is continuous and consequently it is in-
tegrable,
COROLLARY. 1.2
Each p-c.r.e. X on a reflexive Banach space is integrable for p > 1.
Proof. By Propositionl.2 it is enough to check that X(Bo) is relatively weak
compact in Ll. Note that by the closed graph theorem

sup fo [X £ ap < =,

£1¢g°

Consequently by the Vallge-Poussin theorem (see {6], II, T22) the family
{Xf',£'eB%Y is relatively weak compact in Ll.

DEFINITION. (cf. [2]). Let F be a Banach space. We say that a c.r.e. X: F1'_—>Lp
is p-decomposable, p > 0, if there exists a random element x: 2 + F such that

o

1 X f' = <x,f'> for cach f' ¢ F'

o]

2, [x[|P dp <o .




As we have pointed out before even in the Hilbert space L2[0,1] therc arc c.r.c.ts

which arc not 2-decomposable. But in thce case of Hilbert spaces it is casy to
find a full characterization. Namely, if F is a separable Hilbert space, then a
2-c.r.e. X: F' > L2 is 2-decomposable iff X is a Hilbert-Schmidt operator (sec
[5], p. 177). In the case of Banach spaces the situation is much more difficult.
The next result gives a condition for p-decomposability of c.r.e. It seems
to be an interesting addendum to the Kwapien's theorem ([2], Th. 2) and will be
crucial for the proof of Th. 3.2. Let us recall that an operator S : F ~ G is

p-alociutely summing iff

/x/ |Ise|lP < »Lg(S)f o [<EE>[P dau(fy) for all f e F
B

where 1 is a Radon measure on the unit ball 8% of F* equipped with the o(F',F)
topology, (cf. [9], 17.3.2).

THEOREM. 1.1

Let F,G be Banach spaces and S: F -+ G be a p-absolutely summing operator. If

X: F% - Lp is a continuous c.r.e., then

(i} Y = X 8* is p-decomposable by a G-valued function y.

(ii) Let LD be a separable space, then we have the following inequality

. p < p ] p ]
Jo Ny NIF ap < np(S)IBolle ”ﬂ’ du(e")

4

where BO and y are as in the Pietsch inequality /x/.

Proof. From the definition of t-continuity of X there exists an absolutely
convex and weakly compact subset A ¢ F such that X(Ao) is bounded in LP. The
continuity of S implies (c¢f. [11], p. 158) that S*: G% > F% and thus there
exists an absolutely convex and weakly compact subset D c G such that S*(Do)cAo.
Using the Schaefer's convention ([11], IIT §7) let us introduce the auxiliary

Banach spaces




-~ -1 - -1
F' =F'p (OO , G' =G!'/p (O ,
A° T Ao 1)0 1 Do

[+ <] 00
FA = nL__Jl nA |, GD = ngl nD ,

with norms defined by the corresponding Minkowski's functionals. Let

¢ : F!~>F' and $ : G! > G'
A° T A° p° T 0

denote the cannonical quotient mappings and let

WA: FA - F and iy Gy, > G

denote the cannonical injections. We have the following diagrams.

S* X

where SB and XD denote the induced mappings and T = ¢ 0s

A

D

*. From the diagram

we see that X, and T are continuous. Let us note that T* is p-absolutely sum-

D
ming. Indeed, it follows from ([11], ITI Ex. 3c and IV
(Ggo)' = GD and ¢A8 = dA. Thus T*: FA > GD' Moreover
implies S(A) < D, (cf. [11], IV, 2.3). Consequently T*
summing. By the Kwapien's theorem ({2}, th. 2) we have
sable by y (¢): Q@ ~» (G')' = G,. Using the continuity

D p° D
tion wD we claim that the following function
y(2) = bpyp(): 26

decompose X S*.

The proof of part (ii) will be given in two steps.

case X: F% » LP is finite dimensional. Since X is continuous it is p-dccompo-

sablc by a function x: © » F. Consequently XS* is p-dccomposable by y = Sx:Q »G.

§2) that (F'o)' = FA’

A 0, ,0
the inclusion S*(I )cA
= SwA is p-absolutely
that XDT is p-decomno-

of the cannonical injec-

Consider first the .




According to the assumption S is p-absolutely summing. lience

Jlly@lPdp () = [ llsxw) [P 4p(w)

< ng(S)IQfU°|<x(w),f'>|p du(£') dP(w)

= 4P(s XFUlP ducer
np()fuoll IILp M(E"

Now let X be any c.r.e. and assume that the space LP is separable. Thus LP

has a Schauder basis and there exists a sequence of finite-dimensional opera-

tors xn such that X is point approximated by Xn' Let XnS* and XS* be p-decom-

posable by yn(-) and y(*+), respectively. We have

IQH)’n(w) =Y (W) IIp P(dw)
s nﬁ(S)Iuolkxn-xm)fvn P aucen)

By using the Banach-Steinhaus theorem we observe that the right side of the
last inequality converges to zero as n,m + ®, Hence yn(-) is convergent in

Lp(G). On the other hand for each g' ¢ G' we have

LP
<yn(~),g'> = X S*g' > XS*g' = <y(-),g'>

and consequently yn(-) + y(*) in Lp(G). Thus the inequality in part (ii) holds
for any c.r.e. and the proof of th. 1.1 has been completed.
REMARK. The assumption LP is separable, used in part (ii) of the above theorem,

may be omitted in the following two cases:
o s
‘ 17 X is compact

2° X is generated by a weakly measurable p-integrable function.
Indeed, in the first case we may use the metric approximation property of LP

and in the second case one may construct a needed approximation of X by using




operators Xn: F'o- LP generated by simple functions.
As an illustration to the last theorem consider the foilowing:
2

EXAMPLE. As we know for a Hilbert space H a 2-c.r.e. X: H' > L” is 2-decom-

posable iff X is a Hilbert-Schmidt operator. C(onsider a linear continucus ope-

rator S: H » G, where G is a reflexive Banach space. Using the fact G'=G!

detine a new 2-c.r.e. Y in the Banach space G by the following formula:
2
Y = XS*: G'! » L~
T
Then it is easy to observe that Y is 2-decomposable too. Namely, if Xh =
<x(*),h> for vh ¢ H' then v(+) Sx{*) decomposes Y since for Vg' « G' we have

<y(+),g'> = <Sx(*),g'> = <x(+),S*g">

XS*g' = Yg!

Thus we obtain that any 2-c.r.e. Y: G; > L2 which admits a factorization
through a Hilbert-Schmidt operator Y = XS*, where S: H » G is linear continu-
ous and X: H' -~ L2 is Hilbert-Schmidt, is 2-decomposable. But this factoriza-

tion condition is equivalent to the statement that S is 2-absolutely surming

(see [2], Cor. 2). Th. 1.1 shows that, in fact, the assumption "G is reflexive”

1s not needed!

2. Cylindrical martingales. Tn this Section we will first introduce the con-

ditional cxpectation for c.r.e.'s with respect to some sub o-field A ¢ B. For
this we will use the Pettis type integral which was discussed in the previous
section.

Let EA: LI(B) > LI(A) denote the usual operator of the conditional expec-

tation, (see [6], §4), and let X: Fr-> LP, p 2 1, be an integrable p-c.r.e.
obtained as a composition of operators EA and X. Note that if X: F% ~ P s
continuous, then Y = EAX is also continuous. Thus if X: F% -+ Lp is continu-~
ous, 1 < p < «, then for ecach sub o-field A ¢ B there exists a l-c.r.e.

Y = EAX: F% > Ll such that for each A ¢ A we have

-




[yYap={, iAx ap = [y X ap .

REMARKS. 1. Let us note that presented above extension of the notion of the
conditional expectation is also useful for random elements. As we know, any
random element with values in a Banach space F,x: @ - F, which has a weak p-

order defines a c.r.e. X: F% > LP and we may put

EAx = EAX i.e., EA<x,f'> = EAXf' for any f' ¢ F'

Thus always there exists the conditional expectation in the above generalized

sense. It is important since V.I., Rybakov ([10]) has given an example of Pet-
tis integrable random element x with values in a reflexive Banach space F such
that for some sub o-field A does not exist any A-measurable F-valued function

h such that

jA <h,f'> dP = [ <x,f'> dP for A ¢ A, f' ¢ F',

A
i.e., the ordinary conditional expectation for x does not exist. Moreover it
is known (see [14]) that one may construct such examples in any infinite dimen-
sional Banach spaces. Thus even for random elements the conditional expecta-
tion exists only in the above sense.
2. Note that the space Ll(F)- of all Pettis integrable functions is not com-
plete but if F is a separable Fréchet space then its completion il(F) = F @E Ll,
(see [13]}, Th. 3.2).

Finally, let us present some elementary properties of the conditional expec-
tation,

(a) < fA EAX dp, £'> = jA EAXEY dp = jA Xf* dP, A e A, f' ¢ F!

1)
(b) T1If Ac A’', then EA(EA X) = EAX .
{(¢) 1If F is a Banach space, then EA is contraction.
(d) If F is a separable Fréchet space and X ¢ F&ELI, then

EA: FGELI(B) > F@ELI(A) is linear and continuous.




Now we will proceed to investigate cylindric martingales. Let us assumc

that F is a complete l.c.s. and T is a linear ordered set. The main results of
the paper are collected in Th. 2.1 and Th. 2.2.

we mean a family of p-c.r.e.

DEFINITION. By a p-cylindrical precess (Xt) teT
indexed by the parameter set T. It is integrable if for each t ¢ T, Xt is an
integrable c.r.e. (c¢f. Section 1).

As an immediate consequence of Corollary 1.1 we have

PROPOSITION 2.1

lLet (X))

Oter be a p-cylindrical process, p > 1, then the following conditions

are equivalent:

(1) (Xt)teT is integrable.

(i) (Xt)t'T 1s T-continucus, i.e., for each teT Xt: F} - LI is continuous.
1=

be a net of sub 3-fields of B, i.e., if t1 < t,, then

DEFINITION. Let (At)téT

A < At . A p-cylindrical process (X is called p-eylindrical

t t)th’ p=1,

1 2
martingale if
o . . .
1 (.\t)teT is adapted with respect to (At)tsT s
40 . ) .
(Xt)teT 1s T-continuous,
o _As

w

F°X =X for s < t.
t [

PROPOSITION 2.2

Let (X,)

et be a t-continuous p-cylindrical process, then the following conditions

are equivalent:

(i) (Xt)teT is a p-cylindrical martingale,

(ii) (th')teT is a real martingale for each f' ¢ F',
THEOREM 2.1

Lct F; be a barrelled space, p > 1 and let (xt)teT be a p-cylindrical martingale

with respect to (At)b'r’ such that

|




1

sup EIX_ 1" < o ror each f' . 1

t T
Fhen there exists o p-c.r.e. X: Ii: » 1.7 which is continuous and such that

At
X, =} X [t |
t

Proof, Bv the assumntion sup fxrf'lp < v for any f' . F'. Therefore the se:

te’l
’Xt.th} forms a family of continuous linear operators from F! > LP, which is

bounded in cach point f' . F!.  Since F; is barrelled space then the family

’Xt.trT1 is equicontinuous (see [11], p. 107). On the other hand, for each

f' . F! the process (th') is a real p-integrable martingale, p > 1. Heprr

teT

by the martingale convergence theorem ([6], VT 22) for cach f' « F! therc exists
A R

a random variable () T, (+) ¢ LD such that £"%r = X f' and Fith'~Flp ~ 0 pa

t = ~. Putting X(f') = 7 we define a linear operator X: |1 - P 1t is con-

tinuous as a closure point of the family {Xt.teT1 in the point convergent topo-

. . At .
logy (cf. (111, p. 109). Finally, the equality Xt = F X, t e T is a conseauence

of the definition of the conditional expectation and the theorem is proved.
et p > 1 and let MP(R) denote the Banach space of all p-integrable real

mavrtingales m = (mr\tT for which the following condition holds:

11me i ii: (Elmt‘p)l/p <

l.et us observe that any p-cylindrical martingale (X ) defines a linear mapping

t t-T

If F; is barrelled space and

Y- HE T o ~|= []
X: b MP(R) by the formula Xf (th )tlT.

sup EIth'[p < o , then X is continuous. Indeed, by Theorem 2.1 there exists a
teT
continuous p-c.r.e. X such that

IA

%l = Jim(ﬁyxtf'[p)l/P sup (E[th'lp)l/p = sup(E| [EAtxy£r [Py 1/P
t t t

‘A

sup(E EAtIXf'Ip)I/p = sup(Ele‘!p)l/p
t t

= (B|xfe [PYY/P




Thus we have proved the following.
PROPOSITION 2.3

Let F; be a barrelled space and (xt; . be a p-cylindrical martingale for which

tl
sup Elth’(p is finite for ecach f* « ', p > 1, then X: F' - M (R) is continu-
teT ‘ P
ous.

REMARK. Metivier and Pellaumail have studied the case of 2-cvlindrical martin-
gales in Banach spaces. Note that Prop. 2.3 implies that our definition of
cylindrical martingales reduces to the one used in [4], and Prop. 2.2 shows
that it reduces to the second used in [5].

THEOREM 2.2

Let 1 € p < «, F, G be Banach spaces and S: F - (¢ be a p-absolutely summing.
If (Xt)t’T is p-cylindrical martingale in F, then
* i - gt -V i
(a) (th )téT is p-decomposable by a G-valued martingale (yt)tcT'
(by If LP is separable and for each f' ¢ §° (th’)t(T is a convergent in
P martingale, then (XtS*)teT is p-decomposable by a convergent in Lp(G) mar -
tingale (yt)teT'

Proof. From Theorem 1.1 (i) the proof of part {a) follows immediately.

(b) Let for each t ¢ T the c.r.ec. XtS* be p-decomposable by e Suppose

"a contrario'" that (Yt)tcT docs not converge in Lp(G). Thus there exists « > 0
and a sequence t1 <t, < t3... of elements from T such that
EHyt Yy ||p > u for cach myn = 1,2,...
m n

On the other hand by Theorem 1.1 (ii) we have
P

A

P
np(S)I ol

Elly, -y
tm tn B

X, f£r-x_ €17 du(en
tm tn Lp

By the assumption (th') converges in P for each f' ¢ F' and by the Banach-

teT
Steinhaus theorem the operators Xt are uniformly bounded on 8°. Thus using the

dominated convergence theorem we sce that the right side of the above inequality




goes to zero as wm and n tends to ». This gives the nceded contradiction and
thus completes the proof.

Using the last remark from Section 1, we obtain as an immediate corollary
the recent result of Chobanjan, Linde and Tarielad:ze.
CORCLLARY 2.1 ([3}, p. 138).
let 1 < p < o, F,G he Banach spaces and S: F > G be p-absolutely summing. If

(xt) is an F-valued process such that for each f' ¢ F! <xt,f'>t€T is a con-

teT
vergent in 1P martingale, then (Sxt)t{T is a convergent in Lp(G) martingale,

We conclude with an example showing why the decomposability problem is impor-
tant for cylindrical martingales.
EXAMPLE. Consider F = H is a Hilbert space. Then a 2-cylindrical martingale
Yt: H' » Lz is 2-decomposable iff the mapping H' 3 h ~» Yth € L2 is a Hilbert-
Schmidt operator for any t ¢« T, i.e., Yt € HS(H',HZ(I{)) . Thus there coxists
the correspondence between Yt € HS(H',Mz(R)) and an H-valued martingale ytaMz(H)

which is an isometrv. In a similar way if G is another Hilbert space the mapping

(defined in [5])
X+ [X dy

is an isometry from the space of all L(H,G)-valued processes which are square
integrable with relation to 2-cylintrical martingale Y into the space of squarc
integrable G-valued martingales {(cf. [5], p. 185). This means that stochastic
integral fX dY considered as a 2-cylindrical martingale is 2-decomposable by a

G-valued martingale.
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